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For many years it has been evident that the utilization of the observed 
energy levels of atoms and molecules was destined to occupy a prominent 
place in the application of thermodynamics and statistics to chemistry. 
However, it is doubtful whether the very real simplicity of this application 
has been appreciated as it should be. Perhaps this is not surprising when 
one considers the unnecessarily complicated methods often used in treat
ing such problems. It is the purpose of this paper to give the few simple 
statements necessary in connection with the exact determination of certain 
thermodynamic properties from the energy levels of matter as supplied by 
spectroscopy. 

At the present time it is possible to make accurate calculations only for 
the perfect gaseous state. Interpreted spectroscopic data are available 
only for relatively simple molecules. 

For the usual purposes of chemistry it is convenient to consider a large 
group of molecules as a single state without investigating the intimate de
tails of their individual existences. However, in order to make a precise 
statistical calculation of a thermodynamic property, one must have an 
itemized account of all the states among which the molecules are dis
tributed in appreciable concentrations. It may be well to add that the 
state of a molecule has a perfectly definite meaning only to the extent to 
which it is not appreciably influenced by neighboring molecules. 

Let us be clear as to the meaning of a state. Every state corresponds 
to certain definite quantum specifications which are not possessed in every 
particular by any other state. Fortunately spectroscopy supplies the 
necessary information about atomic and molecular states and often more 
accurately than is necessary for ordinary purposes. 

Every state is assumed to have equal statistical weight. This means 
that given equal opportunity to possess the energies necessary for their 
separate existences, all states are equally probable. The convenient use of 
a priori probability to include a group of states has caused some ambiguity 
in the use of the term state. A statement to the effect that a certain "state" 
has an a priori weight of three, means that the "state" is really three states 
which have been grouped together for simplicity of calculation. This is 
customary when the states have so nearly the same energies that they are 
affected in nearly the same way by temperature. However, it should be 
remembered that they are individual states in a statistical sense. 

The problem of finding the distribution of atoms and molecules among 
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the various possible states existing in a gas may, for convenience, be divided 
into two parts, namely, the problem of translation, and that dealing with 
all other possible energy absorption. The quantum-statistical treatment 
of the properties of an ideal gas was first given by Sackur1 and by Tetrode.2 

Later Stern3 and Ehrenfest and Trkal4 contributed much clearer treat
ments. The logic of these earlier treatments left much to be desired, but 
this difficulty has recently been removed by the introduction of Bose-
Einstein statistics. A very satisfactory treatment of this subject, with 
references to the previous work, has been given by Lewis and Mayer.5 The 
final results for the properties of an ideal gas possessing translation alone 
are always the same for the various treatments which have been given. 
We have nothing to add to this subject but recall attention to the fact that 
the translational properties of all molecules, however complicated, are 
represented by the same equations when they are in the ideal gas state. 
This will be used as a starting point. The equations for the entropy of 
translation will be quoted later. 

The thermodynamic properties of gases are usually referred to the stand
ard state, which is the ideal gas state, and this may be treated simply and 
accurately when the necessary energy levels are available. The corrections 
to the actual gas at moderate pressures may usually be neglected at or
dinary temperatures or above, but in any case are readily obtained from 
the data of state. The determination of the distribution of atoms and mole
cules among the various possible states may be approached by means of 
thermodynamics or by statistics. The usual thermodynamic method con
siders the equilibrium between any two states 

B = B ' AF0 = -RTIn— 

n 

There is no entropy change in such a transition since each of the states 
has unit a friori statistical weight. Thus for this simple process the free 
energy change \,F = IE, the energy change, when the particles are taken 
to be a perfect gas. Then the ratio of the numbers in the two states 

n' 
_ = e-^E/RT = e - ( « ' - i)/kT the Boltzmann factor 
w 

e' — e and k refer to the energy difference and the gas constant per mole
cule, respectively. 

Derivations of the Boltzmann factor from statistics may be found in 
numerous books dealing with statistical mechanics. A simple derivation 
has been given by Lewis and Mayer.6 In agreement with Einstein 
they show that the Boltzmann factor is not quite correct, due to quantum 

1 Sackur, Ann. Physsk, 36, 968 (1911). 
2 Tetrode, ibid., 38, 434 (1912). 
3 Stern, Physik. Z., 14, 629 (1913); Z. Electrochem., 25, 66 (1919). 
4 Ehrenfest and Trkal, Proc. Akad. Sci. Amsterdam, 23, 162 (1920). 
5 Lewis and Mayer, Proc. Nat. Acad. Sci., 15, 208 (1929). 
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degeneracy, but since our discussion will deal only with the standard state 
which is non-degenerate by definition, we may accept the Boltzmann 
factor as exactly true. 

With the assistance of the Boltzmann factor one may readily obtain 
the desired thermodynamic properties. Let N be Avogadro's number 
and A the number of molecules in the lowest energy, or zero state (exclud
ing translation). Then as usual the number in the first state is equal to 
Ae~n/kT, where ex is the observed energy per molecule with reference to 
the zero state. The number in the rth state will be Ae~er/kT. From this it 
follows that 

JV = paA. + PiAe~«/kT + foAe-ti/kT + . .. (i) 

where the p's are the a priori probabilities referred to above and it may be 
well to repeat for emphasis that each term in the above expression is 
actually p separate terms with so nearly the same Boltzmann factors that 
the difference may be neglected. The total energy above the zero point of 
the system (excluding translation) is given by the expression 

E" - El = Op0A + tipiAe-n/kT + tiP^e-t/kT + . .. (2) 

where E° is the energy of the substance in the perfect gas state at the 
absolute zero of temperature. The superscript ° is used to designate a 
property of the substance in its standard reference state, in this case the 
hypothetical ideal gas state with a pressure of one atmosphere. This follows 
the conventions of Lewis and Randall,6 which will be used where possible. 
Eliminating A from Equations 1 and 2, and making use of the abbreviation 
afforded by the summation sign 

rX(pe-'/kT 
2pe-'/kT £ ° - ^ = ^ E n ^ r (3) 

= RT* 1^2 , where (4) 

Q = Po + pie-n/w + p2e-«/kT + ... (5) 

These series contain terms for every state that the molecule can assume. 
Differentiation of E° — E0

0 with respect to T gives the heat capacity 
due to the degrees of freedom considered, thus 

AT kT* L 2pe-*/kT X2pe-'/kT ) J w 

_ j , d d In Q' m 

dr d i / r K1 

a well-known equation which was first applied to the actual energy 
levels of a molecule by Hicks and Mitchell,8 who, at the suggestion of 
Tolman, calculated the rotational-vibrational heat capacity of hydrogen 

• Lewis and Randall, "Thermodynamics and the Free Energy of Chemical Sub
stances," McGraw-Hill Book Co., Inc., New York, 1923. 

i Reiche, Ann. Physik, 58, 657 (1919). 
8 Hicks and Mitchell, THIS JOURNAL, 48,1520 (1926). 
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chloride. Their results are unfortunately marred by an error in connection 
with the a priori probabilities.9 

Later the heat capacity of hydrogen chloride was correctly calculated 
by Hutchisson.10 

The entropy can be calculated very simply from the observed energy 
levels of molecules by a method to be given below, the principle of which 
is due to Tolman and Badger,11 who, assuming rigid molecules, obtained 
expressions for the rotational entropy. Their paper unfortunately contains 
a number of errors in connection with the neglect of integration constants 
due to the multiple a priori probabilities of the zero state in several of 
their assumed cases. 

It was shown by Giauque and Wiebe9 that the equation given by Tol
man and Badger holds exactly for molecular entropy due to rotation-
vibration or electron excitation, regardless of how irregular these levels 
might be. 

The method is as follows 

d 5 ° = W'd In T 

Particular attention is called to the term — R In p0 in Equation 13 since 
this has been the cause of considerable misunderstanding. p0 represents 
the number of states which have nearly the energy of the zero state and 
have thus been grouped together for convenience. However, this method 
leads to an assumed situation where even at the absolute zero of tempera
ture the molecules are distributed equally between ^0 states, thus leading 
to a zero point entropy of R In po. The question as to whether this could 
actually happen at the unattainable absolute zero, infinite volume and 
zero magnetic and electric field strengths which would be necessary under 
equilibrium conditions need not seriously concern us in this case. SQ 
= R In po and S°, the absolute entropy, is given by 

• Giauque and Wiebe, THIS JOURNAL, 50, 101 (1928). 
10 Hutchisson, ibid., SO, 1895 (1928). 
11 Tolman and Badger, ibid., 45, 2277 (1923). Urey, ibid., 45, 1445 (1923), essen

tially used this method by graphically integrating one of Reiche's heat capacity equa
tions. 

(8) 

(9) 

(10) 

(H) 

(12) 

(13) 
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5° = i?[lnCr + r ^ 2 ] (14) 

This equation, which holds for all types of states which have been ob
served, is so general that it should hold for any that are likely to be dis
covered. This includes the multiplicities due to nuclear effects such as 
spin. 

We believe it is desirable to give another, even simpler, derivation of 
the important Equation 14, which is the foundation of all the important 
equilibrium data which may be obtained from spectroscopic observations 
on molecules. 

Let us consider a box with two compartments and a total volume such 
that it will hold one mole of an ideal gas at pressure P. Let one compart
ment be filled with gas 1 and the other filled with gas 2, each at pressure P. 
If the two gases are allowed to intermix uniformly, the entropy increase 
is given by12 

AS0 = -R (N1 In JVi -(- JV2 In JV2) (15) 
where ATi and JV2 refer to the respective mole fractions of the two gases. 
In general when there are a large number of gases and corresponding com
partments in the molal box, the expression for the increase in entropy on 
mixing becomes 

AS" = -R(N1 In JV1 + JV2 In JV2+ ... JVr In JVr) (16) 
It is extremely useful to regard the various states among which molecules 

are distributed as supplying the basis for referring to different kinds of 
molecules in much the same manner as it is convenient to distinguish be
tween optical isomers for some purposes. The number of the molecules 
in each of the states (excluding translation) is so large that it is convenient 
to think of a gas having such degrees of freedom as rotation, vibration and 
electron excitation as consisting of a mixture of a large number of kinds of 
gases, each kind being distinguished by its quantum numbers. 

Let us imagine the molal box to be divided into a sufficient number of 
compartments of such volumes as are necessary to contain the equilibrium 
numbers of molecules of each kind or state (excluding translational states), 
at pressure P. Each of the compartments will contain what may be con
sidered as a perfect monatomic gas. Each molecule within a given compart
ment is like every other within the same compartment except for the 
translational distribution. In such a case as that described, the total en
tropy is simply that of a monatomic gas. The entropy due to all other 
degrees of freedom in the equilibrium mixture is just the entropy asso
ciated with the uniform mixing of the various segregated portions. It 
may be well to emphasize in connection with the above statements that 
zero entropy with regard to a certain degree of freedom in no way implies 
that the molecules are necessarily all in the lowest energy state but only 

12 Lewis and Randall, Ref. 6, p . 440. 
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that all the molecules are in the same state, the "lack of randomness" 
of Lewis and Gibson.13 

The entropy of mixing, referred to above, may be calculated as follows 
I p-eJkT 

N0 = Q N1 = -Q-. etc- (17) 
From Equation 16 

AS° = -R \j>, X ^ In i + Pl X ^ - In —^- + . .. J (18) 

-*[*« + TT 2 ^ ] 

which is the previous equation (14). The significance of the p's before 
the terms in Equation 18 is that there are p terms of equal mole fraction. 

The Absolute Entropy.—The well-known equations for the translational 
entropy of a gas, for which references were given earlier, are 

S" = I R In M + I R In T + R In V + | R + C (20) 

where M is the molecular weight, V the molal volume in cc. and C = 
R In [(27rfe)3/2/7rW5/2] = -16.024 calories per mole per degree,14 where h 
is Planck's constant, and from the gas law 

5° = I R In M + ^R In T - R In P + % R + C + R In R (21) 
2t 6J JJ 

when P is the pressure in atmospheres. C + R In R = —7.267. 
To obtain the absolute entropy the amount R In Q 4- RT(d In Q/AT) 

must be added to either Equation 20 or 21. 
The Calculation of Free Energy.—The free energy F is given by the 

equation6 

where the heat content 

For the ideal gas 

Then 

F° = E0 + RT - I RT In M 

-

F = H - TS 

H = E + PV 

H" = E" + RT 

- 2 RT In T + RT In P - ^RT 

CT - RT In R - RT In Q - RT2 ^ ^ 

(22) 

(23) 

(24) 

(25) 

The total energy E° is equal to the sum of the energy at the absolute 
zero E°, the energy of translation 3,-'2 RT, and the energy due to all other 
degrees of freedom RT2(d In Q/6.T). 

E° = E: +lRT + RT>^ff (2,:) 

13 Lewis and Gibson, Ref. 6, Chap. XXXI. 
14 The values used for all natural constants are those given by " Internationa! 

Critical Tables," Vol. I, p. 16. 
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Combining Equations 25 and 26 

F° - E° = -^RTIn M-^RTInT+ RTInP - CT- RTInR- RTInQ (27) 

When the necessary atomic or molecular energy levels are known, Q may 
be calculated for any desired temperatures and tables of F° — E0

0, or 
preferably (F° — EQ)/T may be prepared. By combination of these 
values for the various substances involved in a given reaction, the value 
of A(F0 — EQ) may be obtained. F° is the nomenclature of Lewis and 
Randall for the standard state, in this case, the hypothetical ideal gas 
state with P = I atmos. 

AF° = -RTInK* = A(F0 - E°) + A£° (28) 

From Equation 28 the equilibrium constant may be calculated for any 
desired temperature provided that AE0 may be determined. 

The Determination of AE0
0.—There are three general methods of eval

uating AEQ. (I) When the various excited states of a molecule are known 
up to dissociation into atoms, AE0

0 is known for that reaction from spectro
scopic data alone. By proper combinations AE0

0 can then be obtained 
for other reactions. This method which gives great promise has already 
been applied to the dissociation of a number of diatomic molecules,16 

while most existing calculations of this type are uncertain, due principally 
to considerable extrapolation, it seems certain that this difficulty will 
be minimized by future work on this relatively new method. In several 
cases where the extrapolation is small, the method already provides our 
best source of this information. 

(II) AE ° may be calculated by means of Equation 28, when one reliable 
value of the equilibrium constant is known, or if K is known over a range 
of temperatures, a more reliable value of AE0 may be obtained by making 
use of the several data. 

(III) When AH ° is known from a calorimetric determination at tempera
ture T, AEQ may be obtained with the assistance of Equations 24 and 26. 

Thus AE° = &H° - A Jjj RT + RT* ^ ^ ] (29) 

Equilibrium between Solids, Liquids and Gases.—There are many 
cases where it will be necessary to consider equilibrium between some 
condensed state or states and gases, for example 

C + JO2 = CO 
Here the third law of thermodynamics may be used for carbon in com

bination with spectroscopic observations on the gases. Thus 

F" - JS0
0 = CTCP AT-T C Cp d In T (30) 

Recent values of this function are given by Rodebush and Rodebush.16 

16 Birge, "International Critical Tables," 1929, Vol. V, p. 418. 
18 Rodebush and Rodebush, "International Critical Tables," Vol. V, p. 87. 
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The F used in these tables is our F° — £0°. These may be combined with 
the values of F° — £0° obtained for gases. 

I t is evident that the F° -EQ values for gases are of great utility even 
when no low temperature heat capacity measurements are available. How
ever, as usual, this will necessitate the evaluation of at least one unde
termined constant from equilibrium data. 

In concluding these derivations, it is interesting to note that the exact 
determination of F° — E° from spectroscopic data is a relatively easy 
calculation, involving only the summation of the Q series. The calculation 
of entropy or energy involves, in addition, the temperature derivative of 
the Q series, in which case the terms do not become negligible so rapidly. 

The calculation of heat capacity involves the second derivative of the 
Q series, which is somewhat more laborious to sum. Fortunately the heat 
capacity need not be calculated in the process of determining an equi
librium and in many cases the entropy and energy may also be left unde
termined. 

The calculation of values of the free energy function to high temperatures 
is now in progress for the atoms and molecules for which the energy levels 
are known and it is expected that it will be possible to begin publication 
of this material in the near future. 

Summary 

Methods and equations for the exact calculation of free energy and other 
properties of the thermodynamic standard state of gases have been dis
cussed. 

A simple method of deriving a general expression for the absolute 
entropy of ideal gases has been given. This covers molecular rotation, 
vibration, electronic excitation and nuclear spin. In addition the method 
supplies a valuable insight into the simple relationship of complicated 
molecular states to the entropy. 

The equations given will serve as the basis for an extended series of 
tabulations of free energy of gases based on available spectroscopic data. 

BERKELEY, CALIFORNIA 


